Black Rose
An unbreakable bond
I am trying to write some code for a matrix that arranges nodes based on how well they predict other nodes. But I do not understand how Python works. I used chat_gpt and got this far:
1:[1][2][3][4]
2:[1][2][3][4]
3:[1][2][3][4]
4:[1][2][3][4]
5:[1][2][3][4]
6:[1][2][3][4]
7:[1][2][3][4]
8:[1][2][3][4]
9:[1][2][3][4]
(input1(random 256))
(input2(random 256))
node1(value = input1)
node2(value = input2)
node3(value = sum links/3):link1[node1(weight)]link2[node2(weight)]link3[node3(weight)]
node4(value = sum links/3):link1[node1(weight)]link2[node2(weight)]link3[node3(weight)]
node5(value = sum links/3):link1[node1(weight)]link2[node2(weight)]link3[node3(weight)]
node6(value = sum links/3):link1[node1(weight)]link2[node2(weight)]link3[node3(weight)]
(output1(node5 value()))
(output2(node6 value()))
-
import random
node_value = []
node_position = []
node_prediction_weight = []
def initiate_input():
input_length = 10
input = []
for i in range(input_length):
input.append(random.randint(0, 255))
for i in range(input_length):
node_value.append(input[i])
def initiate_output():
output_length = 10
output = []
for i in range(output_length):
output.append(node_value[x][i]) # a mistake is here ?
def initiate_iteration():
matrix_num_x = 10
matrix_num_y = 10
sum_node_value = []
for i in range(matrix_num_x):
sum_node_value.append(sum(node_value[i]) / matrix_num_y)
for i in range(matrix_num_x):
node_value[i] = sum_node_value[i]
for i in range(matrix_num_x):
for q in range(matrix_num_x):
if node_position[i][q]:
node_position[i][q] = # incomplete